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PREFACE -

»

This is the final technical report concerning the instrumentation for
measurement of cosmic noise at 0.75, 1.225, and 2.0 Mc/s from NASA 11.02
launched in September, 1962. The work was supported under NASw-54. The final
report on the scientific aspects of this program is to be found in a paper
"Cosmic Radio Intensities at 1.225 and 2.0 Mc/s up to an Altitude of 1700 KM,"
by D. Walsh, F. T. Haddock, and H. F. Schulte, Space Research IV, pp. 935-959,
North Holland Publishing Company, Amsterdam, 1964 (Proceedings of the Fourth Inter-
national Space Symposium held in Warsaw in June, 1963).
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INTRODUCTION

This report describes design considerations and performance characteristics
of a complete rocket-borne instrumentation system for absolute intensity measure-
ments of the radio frequency noise energy which originates primarily in the halo
of our galaxy. All portions of the system shown in Figure 1 utilize fail-safe
circuits, alternate channel redundancy, and conservative design techniques wher-
ever possible. Simultaneous cosmic noise measurements can be made while in and
above portions of the ionosphere at frequencies of 0.75, 1.225 and 2.0 mc.

Since the reactive component of the radio astronomy antenna impedance is affected
by the ionosphere, it also 1s measured periodically throughout the flight. The
instruments described herein were successfully fired to an altitude of 1691 kil-
ometers on September 22, 1962. The rocket was designated as NASA 11.02UR and

the results of the flight are reported separately.*

The radio astronomy antenna diagrammed in Figure 1 consists of a L4O-foot
tip-to-tip balanced electric dipole deployed from the instrumentation package
after last stage rocket burnout and outer nosecone ejection. Three radiometers
operating simultaneously from the antenna are alternately switched between the
dipole and an electrical equivalent dummy antenna for in-flight noise calibra-
tion. During the radiometer calibration interval which is repeated every 12
seconds throughout the flight, the antenna is switched to a bridge circuit
which measure the reactive component of the antenna impedance at 1.250 me. At
this frequency, the antenna is electrically very short and thus its terminal
impedance appears almost completely capacitive. Since free electrons present
in the ionosphere affect the dielectric properties of the medium, the antenna
capacitance will vary accordingly. Local electron densities can thus be de-
rived from this measurement. It i1s also possible with the above data to ob-
taln a correction factor for the radiation resistance of the antenna while it
is immersed in the ionosphere. This assists in computing the value of the cos-
mic noise level, and possibly observing the focussing of incoming noise energy
at the radiometer frequencies as the rocket leaves and re-enters the ionosphere.

Figure 2 is a photograph of the prototype and the flight model payload
(at the right) after completion of environmental testing. For clarity, a metal

*D. Walsh, F. T. Haddock and H. F. Schulte, "Cosmic Radio Intensities at
1.225 and 2.0 Mc measured up to an altitude of 1700 KM," Proc. of the
Fourth Int. Space Science Symposium, Warsaw, 1963. North-Holland Publish-
ing Co., Amsterdam, 196kL.



cylindrical outer shield normally placed around the instrumentation section
is not included. Also in the photograph is a complete telemetering ground
station assembled by the project for preflight system checkout, in-flight
data acquisition and recording, and post-flight data reduction.

The above system was designed to be carried aboard an Argo D-8 rocket
shown in Figure 3. It has a predicted peak altitude of approximately 1800
kilometers for a take-off payload weight of 145 pounds. Of the total weight,
94 pounds is scientific payload. The remaining weight is allocated to the
rocket nose-cone, despin system, rocket performance measurement accelerometer,
and the other necessary hardware. The total useable measurement interval is
approximately 1500 seconds with apogee predicted for 922 seconds after rocket
takeoff. The actual flight trajectory for this payload is shown in Figure L.




RADIOMETER ANTENNA

An extensive investigation of the antenna problem has been conducted during
the course of this research program. It is safe to say that the antenna is the
most crucial portion of any rocket or satellite-borne system for absolute inten-
ity measurements at medium or low radio frequencies. This is caused primarily
by the physical size, weight, deployment, and environmental limitations imposed
by the rocket or satellite vehicle. Pertinent electrical and physical character-
istics of air and ferrite cored loop antennas as well as electric dipoles, mono-
pdles and other configurations were all considered for this rocket-borne experi-
ment.

The balanced electric dipole antenna finally chosen for flight use is
composed of two DeHavilland Aircraft Company type A2/2 antenna units shown in
Figure 5. The antenna clement itself consgists of a beryllium copper alloy strip,
2 inches wide, 20 feet long and 0.002 inches thick. The strip is tempered by
heat-treating in a manner which causes it to spring into a long 0.5 inch diameter
thin-walled tube as illustrated by the partially deployed antenna shown in the
figure. For storage, the tube i1s uncurled and wound on a cylinder. The principle
is similar to that of the familiar steel-tape carpenter's rule except that in the
case of the antenna, the element curls around itself 1-1/2 times. Each unit has
a self contained 6 volt DC electric motor and gear train which deploys 20 feet
of antenna in approximately 45 seconds. A clutch is also incorporated in the
drive system which allows the antenna to be manually rewound on its supply spool.

Also shown in Figure 5 is a spring actuated linear potentiometer for moni-
toring the antenna position during deployment. The potentiometer shaft is
tipped with teflon and bears directly against the antenna supply spool. As the
gpool dilameter changes during deployment, the potentiometer glider picks off
the related fraction of the potentiometer supply voltage. When deployment is
complete, a limit switch is arranged to cause the potentiometer output voltage
to decrease by a factor of two. These sgignals from both antenna units are tele-
metered back to the ground so that proper antenna deployment can be confirmed.

Each antenna unit weighs 1.8 pounds exclusive of the external wiring,
antenna position indicator, and the mounting brackets which are not supplied
by the manufacturer. These items increase the total weight of each antenna
unit to 2.25 pounds. The beryllium copper antenna element itself weighs 0.225
ounces per foot for a total of 4.5 ounces per unit. Dimensionally, each antenna
unit occupies a volume 4-7/8" wide by L4-1/8" high by 7-1/2" long, exclusive of
mounting brackets.

Electrically, each antenna unit can be resolved into either equivalent
circuit of Figure 6. The free space radiation resistance is given approxi-



mately by:

where h is the dipole half length in meters and Ry is in ohms. The effect on

Ry of antenna tubing diameter and conductor losses are not considered in this
equation. These effects modify RA less than lO% and will be accounted for during
post-flight data reduction and analysis.

The free space reactive component of antenna impedance represented by CA
is given approximately by:

C T €ph
A R
In(g)-1
where:
h = dipole half length
a = antenna wire radius

Again, factors such as end and terminal effects are not considered in the
equation, but will be measured as discussed below, and considered during data
reduction and analysis.

The final element in the equivalent circuit is the stray capacitance Cgy.
This originates from the proximity of grounded conductors and surfaces adjacent
to the DeHavilland antenna unit. As installed in the rocket payload with the
antenna element fully extended, Cg is 41.5 puf. It should be noted that Cp forms
a capacitive voltage divider with C, which decreases the output voltage. Because
it is undesirable to attempt to tune out CB at all three frequencies, every effort
is made to minimize its magnitude.

Since antenna end and terminal effects cannot be predicted accurately, a full
scale model of one half the payload structure was fabricated for antenna impedance
measurements. Using the method of ground plane imaging, a conducting ground plane
is arranged to bisect the payload longitudinal axis and be perpendicular to the
antenna axis as shown in Figure 7. This model was installed at the antenna test
range of Jansky and Bailey, Inc., in Alexandria, Virginia, for measurement of
antenna characteristics over the frequency range of interest. The final measured
value of capacity of the full dipole was:

CaA = r22* 0.5 pf




There was some doubt about whether the conducting plane was large enough

and sufficiently well grounded for satisfactory determination of radiation
resistance (this does not affect Cp measurement, since C, depends on near
field conditions for which the conducting plane is satisfactory). It was
concluded that the radiation resistance was not appreciably different from the
theoretical values; these are (for the full dipole):

Ry = 0.176 ohm at 0.75 Mc
0.466 ohm at 1.225 Mc

1.20 ohm at 2.0 Mc



RADIOMETERS

1. PREAMPLIFIER

The block diagram of Figure 1 shows a simplified version of the antenna
switching connections. The actual system is more complicated because of the
electrically balanced antenna and the need for preventing the 2L0.2 megacycle
10 watt radiated transmitter power from entering the preamplifier. Figure 8
shows a more complete representation of the input circuitry. The antenna
switch is a two-pole, 6 position Ledex rotary solenoid actuated stepping
switch which alternately connects the balanced preamplifier input terminals
to the antenna or the dummy antenna. During the period when the preamplifier
igs connected to the dummy antenna, the antenna itself is connected to a circuit
for measurement of the capacitive component of the antenna impedance. Addi-
tional wafer switch sections are also activated by the Ledex to control timing
of the switching intervals and application of supply voltage to the bridge
excitation oscillator. Balanced series resonant 240.2 megacycletrap circuits
at the antenna output terminals and parallel resonant traps at the preamplifier
input terminals effectively prevent transmission of telemetering interference
to the antenna capacitance measuring circuit and preamplifier input. The
antenna capacitance bridge circuit also shown in Figure 8 will be discussed in
a succeeding section of this report.

The preamplifier circuit diagram is shown in Figure 9. It consists of &
stable, high input impedance, broadband, low-noise, neutralized cascode amplifier
feeding three cathode followers. Each cathode follower has a 50 ohm output impe-
dance and serves to isolate the input of each receiver from the other two. This
feature makes it unnecessary to control the receiver input impedance except at
ite own operating frequency. The receiver input impedance is 50 ohms at band
center and decreases sharply outside the operating bandwidth. This decreases
the gain of the cathode follower off the band center and thus effectively
reduces input signal levels except at the appropriate operating frequency.
Spurious receiver responges are thereby minimized.

Physically, the preamplifier is separated into two sections. The first
stage shown in Figure 10 is packaged with the antenna switch, dummy antenna
and antenna capacitance measurement system. The first stage weighs 1 pound
and occupies 38 cubic inches. The second portion of the cascode amplifier
and the three output cathode followers shown in Figure 11 weighs 14 ounces and
occupies’Tcubic inches.

Of particular interest in the preamplifier is the broadband, balanced in-
put antenna transformer (T;) and neutralized first stage of the cascode amplifier.
Considerable effort was allocated to the design and development of this section




of the system. The antenna transformer shown in Figure 12 is wound on a 5.5
inch length of 0.335 inch diameter ferrite rod obtained from a J. W. Miller
type 2000 ferrite core loop antenna. The center-tapped transformer primary

ig a pi-wound coil consisting of 100 turns of 3 x 41 litz wire. The secondary
is solenoid wound with 150 turns of 3 x 41 1litz wire. Stray capacitance in-
herent in both the primary and secondary windings of this transformer is care-
fully controlled so that adequate bandwidth can be achieved.

The overall preamplifier bandpass characteristics are determined by the
amount of interstage capacitance, the input transformer coupling coefficient
and the amount of feedback from the neutralizing transformer T2u The coupling

coefficient of T_ is controlled by sliding the primary winding along the axis
of the ferrite rod until the desired point 1s reached. After the coupling co-
efficient adjustment is complete, the primary is cemented in place on the two
fiberglas +traverse rods. The complete assembly is polylsocyanate foam encap-
sulated in a phenolic tube shown mounted in place at the bottom of Figure 10.

The first stage of the cascode amplifier ig a General Electric ceramic-
and-metal planar triode type TWb2. It is similar to the type TOTT, and as
used here operates at a plate current of 5.6 milliamperes. This operating
point produces a g, of 9500 micromhos, a plate resistance of 10K ohms, a u
of 95 and a plate dissipation of 790 milliwatts. Under these conditions the
equivalent serieg noise resistance ig approximately 250 ohms. The B+ power
required for the complete preamplifier is 33 milliamperes at 200 volts DC.

It will be noted in Figure 9 that all tube filaments are wired in series.
Since an open filament in any of the three cathode followers only affects its
respective channel, Zener diodes are placed across each of these tubes so that
preamplifier operation will be unaffected by one or more cathode follower fila-
ment failures. The total filament power required is 400 milliamperes at 25
volts, DC.

Figure 13 illustrates the 2-stage preamplifier frequency response from
the input terminals of the dummy antenna to the resistively terminated output
with selected values of antenna C,, as a parameter. It should be noted that
for the 32 puf free space value of Cp, the capacitive voltage divider action
attenuates the input signal by a factor of approximately O.4k. The gain of
the preamplifier from the input of the balanced wideband transformer to the
second stage output at 1.225 Mc is 31 db. Figure 14 presents measured curves
of the preamplifier RATA product in ‘K-ohms, as CA in the dummy antenna is
varied above and below the antenna free-gpace capacitance.

The noise performance of the preamplifier with the antenna as a source

impedance can also be characterized by a set of noise parameters as discussed
by the IRE Subcommittee 7.9 on Noise.l These parameters have been measured

"I.R.E. Standards on Methods of Measuring Noise in Linear Twoports, 1959" and
"Representation of Noise in Linear Twoports,” Proc. I.R.E., vol 48, No. 1, January,

1960 .



for a typical preamplifier and are shown in Table I below.

TABLE I
Freq. (Mec) F, G, (mhos) B, (mhos) R, (ohms)
2.00 2.U7 1.8 x 107 +.02 x 1077 2310
1.225 2.10 3.62 x 107 +.34 x 1070 1100
0.75 2.35 4.65 x 10'1‘ +.49 x 107 1025

Using these values, the noise performance can be predicted by using the following

equation:
R,T,~R T X,° Ra 2 1 2
atAT S o M - - G) *t=- B
X3 Xy

The calculated values which show good agreement with the measured performance
are also plotted on Figure 14. The minimum detectable antenna temperature
capability of the complete system will be discussed in the calibration section
of this report.

2. RECEIVERS

The three radiometer receivers, each driven from a separate cathode
follower in the preamplifier, are conventional superheterodynes. A 2-triode
cascode connected R.F. amplifier is followed by a pentode mixer with a separate
local oscillator stage. Two pentode intermediate frequency amplifiers with
AGC, and operating at 450 kilocycles are followed by a full-wave bridge second
detector. The detector drives a transistor audio amplifier and an RC time
averaging type integrator with a charge and discharge time constant of 0.1
seconds. This filter is followed by a cathode follower stage which is used to
establish the optimum DC level and output impedance for the telemetering system.
The audio output is also telemetered so that man-made or atmospheric noise leak-
age through the ionosphere, or abnormal receiver performance can be monitored.
This cannot be done if only a smoothed output channel is available.

Figures 15 and 16 present the receiver details. Except for tuned circuits
in the RF amplifier, mixer, local oscillator and a 1.2 Mc series resonant trap
circuit in the mixer grid circuit of the 0.75 Mc receiver, all three circuits




are identical. The trap circuit is required because it is necessary to reject
a small spurious response produced by the fourth harmonic of the 300 ke local
oscillator signal which beats with the incoming frequency +to produce a differ-
ence frequency at U450 kec.

Figure 17 1llustrates the receiver bandwidth characteristic at the second
detector output. This response was obtained by varying only the modulation
frequency of a sine wave modulated carrier. Other tests showed that the second
detector smoothing filter did not affect the low or high frequency bandwidth
within the range shown on Figure 17. This response results in an IF amplifier
noise bandwidth at the second detector of T7.06 kc.

Power requirements for each receiver are: 130 volts DC at 18.6 milli-
amperes B+ and 25.6 volts DC at 300 milliamperes filament current.

All components have been carefully selected for stability and ruggedness,
and particular attention has been paid to the construction techniques used.
After adjustment, each transformer and inductance is potted with a high melting
point compound so that the ferrite core materials are not adversely affected by
the Test and Enviromental program and the rocket flight itself. The receiver
case is fabricated from magnesium, weighs 1 pound 14 ounces when ready for flight
and occupies T4 cubic inches.



ANTENNA CAPACITANCE MEASUREMENT

The antenna capacitance measurement is performed at 1.25 Mc for 2
seconds every 12 seconds throughout the rocket flight. A 25 kc offset from
the 1.225 Mc radiometer channel helps reduce the radiometer saturation when
the bridge is energized. The capacitance measurement is accomplished by
means of the circuits shown in Figures 18 and 19. Strictly speaking, this
is not a true electrical bridge, but for convenience the term is used in
this report. The "bridge" circuit is in fact a balanced-with-respect-to-
ground resistance-capacitance voltage divider. A simplified version of the
circuilt and its voltage vector relationship is shown in Figure 20. If it is
assumed that Ry << XCA, that the output detector input impedance is high, and
Ed, (in Figure 18) is a constant, then the vector relationship of Figure 20 is
valid. The locus of the voltage vector E} orgin is a semicircle with radius
Ein/E, and the output detector responds to the magnitude of Eéut' Note that
in Figure 20 Ej = E5 + K; and Ej = Ko Eip where K; = By + B and Kz =
(Rg + Ry)/Ry. For a fixed frequency and any set of Cp plus Cp, resistor R can
be chosen so that 6 = U5° which is the condition for maximum AC sensitivity.
In practice, these assumptions are not always completely met and thus the analy-
sis becomes somewhat more complicated. Two examples of this are of interest.
First, the regulation of the balanced-excitation sine wave generator is not per-
fect, which causes Ei, to vary slightly with Cp as shown in Figure 35. The sys-
tem is very stable however and thus subject to calibration. Second, when the
antenna is immersed in the ionospheric plasma, the free electrons present modify
the dielectric constant of the medium, and Cp and Rp will vary. When Rp is not
small with respect to Xgp» the bridge output cannot be interpreted as simply a
variation in Cp.

The bridge shown in Figure 18 is designed to measure the balanced antenna
equivalent capacitance Cp from -15 puf to + LO pupf when Ry < XCA. The Ein de-
tector monitors the bridge excitation level so that corrections can be made if
necessary. The output detector consists of a full wave voltage doubler rectifier
and low pass filter. The series biasing batteries assist in achieving the desgired
capacitance measurement range and resolution shown in Figure 35. The voltage
doubler allows a lower RF voltage level at the antenna terminals and thus reduces
antenna sheathing effects in the ionosphere.

The RF excitation voltage is supplied by a Colpitts type crystal controlled
oscillator, followed by a buffer amplifier stage shown in Figure 19. The output
circuit of the amplifier contains a ferrite, torroidal core transformer which 1is
carefully fabricated and trimmed to produce a phase and amplitude balanced out-
put for the bridge. Figure 21 shows physical details of the oscillator and bridge.

10




RANDOM NOISE GENERATOR

The requirement for a reliable and rugged in-flight calibrator for the
three radiometers poses a rather difficult design problem because of the 1 x

107°K signal level required. CW, pulse, or amplitude modulated carriers re-
gquire the generation of constant amplitude signals. If the radiometer center
frequency, or bandwidth shifts somewhat during flight, a CW or pulse type cali-
bration will result in a misleading interpretation of the changed response of
the radiometer to the actual cosmic noise being measured. The only completely
satisfactory solution is the in-flight use of a wide-band random nolse generator.

After careful study of various methods for generating wide-band random noise
that would have a reasonable chance of surviving the powered portion of the rocket
flight, a special, double-diffused silicon Junction noise diode’ was chosen. The
diode is operated reversed biased and well beyond the knee of the Zener region. A
good diode does not exhibit the typical spiked or ragged and erratic voltage fluc-
tuations associated with the avalanche conduction mode. When the diode operating
current is correctly chosen, the noise output is symmetrical with respect to a
zero base-line and appears to have a satisfactory distribution of amplitudes
with no frequency coherence when viewed on a high frequency oscilloscope.

The circuit developed here for use with this diode is shown in Figure 22.
This circuit with a properly selected noise diode is capable of preducing an
equivalent noise temperature at the dummy antenna output terminals in excess of
1 x 10°°K. A step-down transformer and a high-beta silicon transistor is used
as an emitter follower to match the noise diode internal impedance (approximately
300 ohms at 1 Mc) down to 50 ohms for input to the dummy antenna unbalanced-to-
balanced input transformer. It has been experimentally verified that the tran-
sistor itself contributes a negligible amount of noise to the total output.

At the time the noise diode selection was made, relatively little was
known about the long-term characteristics of the device, so an extensive measure-
ment program was undertaken to obtain information on important parameters such
as noise output quantity and gquality with respect to diode operating current and
temperature, spectral distribution of energy, and short and long-term stability.
The last item mentioned has been underway for approximately 16 months and the
results to date indicate that the stability of the diode as used in the rocket
experiment is adequate. Of 11 diodes on continuous life test for 16 months,
there has been one unexplained catastrophic failure, and one failure due to

¥ Solitron Sounvister Diode Type SD2L, Manufactured by Solitron Devices,
Norwood, New Jersey.

11



connecting lead failure. The remainder of the diodes continue to operate
satisfactorily. The average noise output change in 16 months is less than
0.4 db. The maximum observed change was +1.3 with a measurement uncertainty
of + 0.25 db. Since these diodes were obtained more than 2 years ago it can
probably be assumed now that diocdes of ‘recent manufacture will be even better
since it is known that the manufacturer is actively engaged in improving the
product.

It is important to recognize that the diode as used in this experiment
is used only as a comparison device. The laboratory thermionic noise diode
calibrations are used as the absolute standard and the in-flight solid-state
diode merely serves as a means to determine the magnitude of any change in
the radiometer calibrations.

Noise diodes considered suitable for flight must exhibit characteristics
at least equal to the following:

1. The spectral distribution of the noise must be constant within *0.5 db
from 0.75 to 2.0 megacycles at constant temperature and diode current.

2. When the noise diode current is varied = 10% from the optimum
value, the output level and spectral distribution of the noise
energy must not vary more than *0.5 db. When the noise signal
is viewed on a wideband oscilloscope, there must be no noticeable
change in the appearance of the waveform.

3. The noise output must not vary more than *0.5 db over; the
temperature range from O°F to +1L40°F.

Figures 23 and 24 show the temperature and spectral performance of the
noise diode chosen for flight. ©Since a measurable temperature coefficient
does exist, a small constant temperature oven operating at 90°F *3°F was
designed for the complete noise generator circuit. Construction details are
shown in Figures 25 and 2. Both the diode operating current and the oven
internal temperature are monitored during flight for reference purposes.

12




PHOTOCELL ASPECT SYSTEM

Two self generating silicon solar cells for aspect sensing are mounted on
the instrumentation rack as shown in Figure 27. The upper cell for detection
of vehicle tumble has a small circular aperture directed upward and parallel
to the payload spin axig. The lower photocell for the detection of vehicle
spin is mounted to look radially outward in the plane of the spin axis. It
is inclined downward at an angle of 45° to a plane perpendicular to the spin
axis. At low light levels, the photocell output voltage is proportional to
the logarithm of the incident light intensity but when directly viewing the
sun, the output is saturated. FEach photocell output is sampled for 30 milli-
gecond once each second on the commutated telemetering channel. The azimuth
or spin axis cell field of view is shown in Figure 28. It will be recognized
that this is a very simple aspect system which cannot provide high accuracy
because of the lack of optics and the time-multiplexed data sharing. Spin
history of the flight, and detection of payload tumble is possible however,
provided that neither the spin or tumble periods are equal to or less than the
1 second telemetering sampling period.

13



CALIBRATION

1. RADIOMETERS

Calibration of the instrumentation just described divides naturally into
two phases: the laboratory pre-flight calibrations, and the in-flight pro-
grammed calibration. All laboratory pre-flight radiometer response calibra-
tions are performed with a wide band random noise generator designed and built
in this laboratory. The noise generator circult shown in Figure 30 uses a
temperature limited thermionic diode as a noise source followed by a stable
wide-band amplifier. Amplifier gain is measured and adjusted if necessary
with accurate step attenuators before each calibration is undertaken. This
is done at each of the three radiometer operating frequencies. The resultant
accurately known noise energy is controlled by cascaded step attenuators
which feed the rocket dummy antenna input. This calibration scheme thus
regquires only a constant output noise generator and stable, accurate step
attenuators. Since the diode current can be measured with high precision and
and all other measurements require only the use of passive attenuators, it is
believed that a minimum amount of systematic calibration uncertainty is intro-
duced.

Correction is made for the dummy antenna unbalanced-to-balanced input
transformer insertion loss, and measurement of all capacitors is done with
the precision substitution method diagrammed in Figure 29.

In addition to the primary radiometer random noise calibrations through
the rocket dummy antenna adjusted to simulate the antenna electrical character-
istics in free space, other values of C, are inserted in the dummy antenna to
stimulate the reactance changes which occur when the antenna is immersed in the
ionosphere. With a known signal present at the dummy antenna input, it is thus
possible to determine the preamplifier voltage transfer function versus CA and
derive correction factors which can be applied to the radiometer results. Curves
of these transfer functions are shown in Figure 31.

Correction factors are also determined for ambient temperature effects
on the radiometers and antenna capacitance measuring circuitry. The instru-
ment ambient temperature is monitored during flight and thus appropriate
corrections can be made if necessary. Experience has shown however, that these
factors are usually small.

The complete radiometer calibration curves for 0.75, 1.225 and 2.00 Me

are shown in Figures 32, 33 and 34. Assuming that the smallest resolvable
increment of telemetered voltage is 1 part in 100, the minimum detectable
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R'T product for each of the three channels is 1 x 10%°K .ohms at 0.75 Mc,

6 x 105°K-ohms at 1.225 Mc and 7 x 10°°K.ohms at 2.00 Mc. Actually, the
telemetering resolution for this system is closer to 1 part in 500. This
permits an even lower minimum detectable noise signal level to be attained.

A unique feature of this measurement system is the two-step in-flight
radiometer noise calibration. The same switch that connects the antenna to
the bridge for antenna capacitance measurement also connects the preamplifier
input to the dummy antenna. The first step of the calibration is the zero in-
put signal level thus established. Two seconds later the wide-band random noise
generator connected to the dummy antenna is energized, and a known noise level
calibration point is obtained. It is not necessary to disconnect the deener-
gized noise generator from the dummy antenna when the "no-noise" calibration
point is obtained. This is because the source impedance at the secondary of
the dummy antenna input transformer is very small with respect to the reac-
tance of the antenna capacitance Cp and thus does not affect the input system
noise temperature.

2. ANTENNA CAPACITANCE

Pre-flight calibration of the antenna bridge involves the precision
measurement and pairing of equal capacitors using the test setup shown in
Figure 29. These capacitors are then substituted in place of the actual
antennas in the rocket payload and the calibration curves shown in Figure
35 are obtained. The phrase "antenna equivalent capacitance”, Cp used in
the figure refers to the equivalent unbalanced antenna capacitance which is
Just 1/2 that of each half of the actual balanced antenna as shown in Figure
5. The transfer function shown in Figure 31 aids in data reduction if the
excitation level varies or the bridge thermal temperature changes substan-
tially during flight.

Calibration of the negative CA.portion of the total measurement range is
accomplished by temporarily reducing the total capacity below that of the stray
shunting value (CB/2) only. Since the radiation resistance is so small that it
can be neglected, the bridge normally sees the capacitances, CA and CB/2 in
parallel as shown in Figure 6. If the leads to the undeployed antennas are now
disconnected, the shunt capacitance is reduced. The bridge cannot distinguish
this condition from one where CB/E ig its normal value and CA,= _CB/Q_ Thus,
over the range 0 > Cp > -CB/E, the bridge can be calibrated for -CA by adding
known capacitors in place of CB/Q. It 1s necessary, of course, to account
properly for all stray capacitance changes that might occur during this sub-
stitution procedure.
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COMPIETE PRE-FLIGHT CALTBRATIONS AND MEASUREMENTS

A large number of supporting calibrations and pre-flight measure-
ments is also required. These are intended to aid in monitoring per-
formance and recovering as much usable information as possible if a
malfunction occurs in the system during the rocket flight. The follow-
ing is a typical list of pre-flight calibrations and measurements:

1. Measureinsertions loss and input impedance of dummy antenna
matching transformer at 0.75, 1.225, and 2.00 Mc.

2. Measure value of flight dummy antenna C, capacitors.

3. Measure stray (base) capacity to ground of the DeHavilland
antennas and associated wiring. Include correction for change
in stray capacitance caused by antenna deployment during flight.

h. Measure and adjust dummy antenna shunt capacitors to match
item 3 above.

5. Measure dummy antenna-preamplifier voltage transfer function versus
antenna Cy at 0.75, 1.225 and 2.00 Mc.

6. Calibrate antenna capacitance measurement circuit from
Cp = +LO puf to -15 uuf.

7. Determine temperature coefficient of item 6 above.
8. DNoise calibrate each radiometer through rocket dummy antenna.
9. Determine temperature coefficient of item 8 above.

10. Calibrate each radiometer noise bandwidth at f e, dt levels of
0, 1.0, 2.0, 3.0 and 4.0 volts.

11. C.W. calibrate each radiometer through rocket dummy antenna.

12. Measure rms output voltage of each radiometer audio output
channel for complete range of input noise levels.

13. Repeat item 8 and vary filament voltage by *5%.

1h. Repeat item 8 and vary +200 volt B+ voltage by +5%.
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15.
16.

”17.

18.

19.
20.

2l.

22.

Repeat item 8 and vary +130 volt B+ voltage by *5%.

Calibrate thermistors which monitor receiver base plate,
antenna bridge support and noise generator oven temperature.

Make a wide-band (100 ke to T Mc) true rms voltage measurement
of the noise generator output voltage.

Optically calibrate the spin and tumble axis aspect photocells.
Measure linearity of the five telemetering subcarrier oscillators.
Calibrate the antenna right and left-side position monitors.

Measure the absolute value of the in-flight telemetering
calibrator voltage.

Measure the following telemeter-monitored operational voltages:
a. =32 volt battery

b. +1k volt battery

¢. +130 volt regulated B+

d. +200 volt regulated B+

e. =25 volt regulated filament voltage

f. +9 volt regulated VCO supply voltage

g. Noigse generator current

h. nose-cone position monitor

1. antenna power monitor

J. vreceiver audic commutator position monitor
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SWITCHING SEQUENCE TIMER

Because of the involved switching sequence reguired to perform all
of the measurements and calibrations, a rather complicated timer is neccessary.
The time relationships can best be illustrated by referring to Figure 39
which illustrates a complete sequence of switching events. Note that T2
seconds are required before the system repeats. In that interval the pre-
amplifier and bridge sequence is repeated 6 times, the receiver audio output
commutator sequence repeats twice and the telemetering VCO channel calibra-
tion occurs once.

Referring to Figure 36, the basic timing interval is generated by the
astable multivibrator labeled "Antenna Timer". The output of this timer is
a -32 volt pulse with a duration of approximately 50 milliseconds. The pulse
is used to drive two power amplifiers, which in turn energize the antenna
Ledex and the audio commutator Ledex. The antenna Ledex shown in Figures
8 and %36 drives a twelve-position multi-wafer switch wired as a 6-pole
double throw switch. ZFour of the poles are used to switch the balanced preamp
and bridge to the dummy antenna and antenna. One pole is used to furnish -32
volts to the Zener regulator, Dlo' The remaining pole supplies -25 volts to
the bridge excitation and noise generator delay circuits. These delay circuits
are designed to energize the circuits they control a specified number of seconds
after the delay timer is energized.

The audio commutator Ledex shown in Figure 37 is a twelve-position rotary
switch with one pole wired as a three-position switch. It thus switches elec-
trically once every two times the lLedex is energized. The second pole is wired
to function once for every revolution of the Ledex, and provides power for the VCO
calibration timer circuitry for 6 seconds every T2 seconds. The third pole
provides an analog switch positionvoltage to the commutated telemetering channel.

In both the delay circuits and the calibration timer, if the circuits fail
in either the energized or de-energized position, they will be switched out
within six seconds by the antenna timer. Further, if either or both the antenna
Ledex or the video commutator Ledex should malfunction, the antenna timer will
continue to energize them in an attempt to restore normal action. Under these
circumstances, the audio commutator Ledex may get out of "sync" with the an-
tenna Ledex. This is not serious, however, because the audio commutator and
calibration sequence will merely be shifted a multiple of six seconds from the
antenna sequence. Also, the position of the audic commutator is telemetered
and thus ambiguity is avoided.
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Although the above is a brief summary of the switching, a more detailed
discussion seems warranted because of the complexity of the system. The
basic antenna timer circuit is shown in Figure 38. Applicable waveforms for
this and other circuits to be discussed are shown in Figure 39. The first
basic circuit is the antenna timer, which is a conventional astable multivi-
brator with approximately symmetrical 3 second on-off times. The output
relay is placed in series with a capacitor from the collector of TRg to
ground. This is done to limit the relay actuation time to 50 milliseconds,
while still maintaining a total period of 6 seconds. When TRg is cut off,
C4 charges through Rs and the relay coil. Since the relay is a magnetically
biased polarized type, the chargingcurrent does not trigger the relay. When
TRg conducts, C4 discharges through the relay coil. The current direction
is now correct and the relay operates. The time constant of the relay coil
and C4 1s adjusted so that the relay remains closed for approximately 50
milliseconds. Diode D7 prevents the relay coil back EMF from damaging
capacitor Cg4.

The second basgic circuit is the delay-on timer which is used in the
VCO calibration sequencer, the noise generator delay and the bridge excita-
tion delay timer. Referring to the simplified circuit in Figure 40 transistor
TRz is cutoff and Ce initially is not charged. When -E.. is applied, Ey begins
falling toward -Ecc as the capacitor charges. When E, reaches about -0.2 volts,
the transistor conducts and relay RLY, functions.

In the circuits for the bridge excitation delay and noise generator delay
shown in Figure 36, additional resistors (Riz and Ry7) have been provided.
They are switched across C when their relays are energized. This is necessary
because these circuits must be re-set within 6 seconds after they are de-
energized. If this provision is not included, the re-set time is about T =
5 RC where R = 100K which, in the case of the above delay circuits, would re-
quire 100 and 75 seconds, respectively. With the re-set provision, the time is
shortened to about 1 second, and occurs while the relay is still energized.
Thus, if the delay circuit remains on for 1 second or more, the circuit will be
fully re-set immediately after de-energization. This provision is not necessary
in the VCO seguences because it must function only once in 72 seconds and has a
normal re-set time of about 25 seconds.

The delay-off gate shown in Figure 41 and used in the VCO calibration
timer is the final type of delay circuit used. In this case, audio commutator
ledex wafer B provides the initiating power, -ECC, to the circuit. Relay RLY;
is energized immediately and is de-energized 2 seconds later. This method of
terminating the VCO calibration has been chosen because of reliability con-
siderations. If the audio commutator Ledex malfunctions in the VCO calibrate
position, for instance, a delay-on timer cannot be wired fail-safe. The delay-
off timer will time out and no further VCO calibration can then occur until
Ledex wafer B, completes 12 steps. Circuit operation is basically the same as
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that of the delay-on gate previously described except that, instead of using
TRz to energize a relay, the rise in collector voltage when TR, conducts is
used to cut off TRi, which was previously conducting and which has relay RLY;
in ite collector circuit.

The audio and antenna commutator Ledex stepping switches each require
a 28 volt 35 millisecond 3 ampere pulse for proper actuation. This is accom-
plished with power transistors TR;j; and TR;5 shown in Figure 36. The bases
are normally cutoff by the +1L4 volt supply through relay RLYg contacts and drive
resistors Rg and Rpy. When RLYg closes for 50 milliseconds the bases are driven
into saturation from the -32 volt supply, the transistors conduct, the lLedexes
actuate and step one position. The Ledex coils must not remain energized for
extended periods because of their limited duty cycle rating. Also, the large
current that flows is a substantial load on the battery. These reasons dictate

1 1"

the choice of a 50 millisecond "on cycle for relay RlYg.

To eliminate ledex switching transients from interfering with proper
timer performance, it 1s necessary to operate the collector of TRg from a
separate Zener regulator diode Dg. The base drive circuits of TRy and TRg are
also decoupled with Zener regulator diode Diy. Precision control of the delay-
on circuit timing requires a stable voltage for the base drive circuits. Zener
diode Dg provides a regulated source of +10 volts from the unregulated +14 volt
battery.

All timing capacitors in the circuits of Figure 36 are hermetically sealed,
sintered anode, wet slug tantalum type XT capacitors manufactured by P.R. Mallory.
Over all extremes of supply voltage and ambient temperature, antenna switch timing
accuracy was maintained within i5% of nominal. The VCO calibration period varied
by 0.4 second at the extremes. Furthermore, since all circuits varied in approxi-
mately the same degree, no timing functions were shortened or lengthened apprecia-
bly with respect to the others.

Two additional timer features not used on the flight payload are also shown
in Figure 36. The bridge Ledex sequencer (enclosed in the dotted box) is another
astable multivibrator similar to the antenna timer for the control of an addi-
tional lLedex stepping switch. Antenna Ledex wafer A; is located in the upper
right-hand corner of Figure 36. If the jumper shown across terminals 43 and Lk
is removed, the antenna timer astable multivibrator switching intervals will
become unequal because timing capacitor Ci» (and Cg if used) will alternately
be switched in and out of the base circuit of TRg. This function is not required
however when the bridge Ledex sequence timer is not used.

All timer circuits are mounted together in a subassembly shownin Figure

L2. The unit weighs 38 ounces, exclusive of the Ledex actuators and it occupies
81 cubic inches.
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TELEMETERING SYSTEM

The telemetering system adopted for this experiment is a standard

FM/FM system which conforms to the IRIG specifications. The FM transmitter-
RF power amplifier combination operates at 240.2 Mc with a power output of 10
watts, nominal. Six FM subcarrier channel signals are summed and constitue
the transmitter modulation input. True frequency modulation occurs in thig
transmitter design. The transmitter RF output drives a turnstile antenna de-
signed to have a near optimum radiation pattern for the expected rocket tra-
jectory. Each of the telemetering subsections is described in detail below.

1. SUBCARRIER OSCILIATORS

Six voltage controlled subcarrier oscillators (VCO) are used in this
system as shown in the upper section of Figure 37. Five are EMR type 184C
oscillators and the sixth is a Vector type supplied by NASA Goddard Space
Flight Center in the vehicle performance accelerometer package. Each VCO is
designed to accept an input voltage range of O to +5 volts, DC. The upper
modulation frequency limit of each VCO is dependent on its output carrier
center frequency. Modulation (i.ev deviation) linearity of the EMR VCO is
O.l% or better, about the best straight line for *7.5% deviation. Input
and output impedance is 500K ohms and 5K ohms respectively. The output
carrier level is adjustable to 5 volts rms. Input power required is 4.5 ma
at +9 volts regulated. Bach VCO is separately fused so that a failure in
one VCO will not affect the others.

All VCO outputs are summed in a resistive network shown in Figure 37.
Subcarrier preemphasis is used to achieve equal channel signal-to-noise
ratio at the telemetering reciever output. Details are shown in Table II.

TABLE II

IRIG Center Frequency Band Output
Band  Frequency, Deviation, Width, Level, Data Assignment

No. cps % cps rms v

9 3900 + 7.5 50 0.21 NASA accelerometer

11 7350 + 7.5 110 0.20 0.75 Mc radiometer [ey dt
12 10500 *7.5 160 0.23  1.225 Mc radiometer [e, dt
13 14500 +17.5 220 0.30  2.00 Mc radiometer [e, dt
1k 22000 *+ 7.5 3%0 0.35 30-channel commutator

E 70000 *15.0 2100 0.62 Radiometer audio outputs
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2, INPUT SIGNAL LIMITING 7

Since a malfunction of a radiometer or other circuits feeding the VCO's
could cause the normal input range of O to +5 volts to be exceeded, a signal
limiting circuit for each VCO input is required. A series resistor followed
by two biaged silicon junction diodes shown in Figure 37 is used. This
limiter prevents the gignal level at the VCO input from exceeding -0.5 v to
+5.5 volts. The negative limit diode is biased at zero volts and the posi-
tive limit diode is based at +5.0 volts which is derived from the +9 volt
regulated supply.

3. VCO IN-FLIGHT CALIBRATION

A O volt and +4.04 volt two-step in-flight calibration is performed
every 72 seconds during flight on all VCO's except the 22 kc commutated
channel which uses these same two voltage levels as two of its regular
30 input channels. The +4.OL volt level is obtained from three RM-1
mercury cells. At the beginning of the calibration cycle all limiter inputs
except the commutated channel are disconnected, paralleled by relays RLYo
and RIYs in Figure 37 and connected to the VCO calibration input terminal
MB36. This point is first connected to signal ground by relay RLY, in Figure
36. One second later the signal ground is removed and the +4.0k volt mercury
battery is connected to the line. After one additional second, calibration
is complete and all VCO's are returned to their normal data inputs. From the
two calibration points so obtained, correction factors (if any) can be obtained
for all in-flight and ground station telemetering system drifts. The magni-
tude of the mercury battery voltage is measured to +.01% before flight and it
is agsumed that it remains constant throughout the flight. This battery serves
no other purpose and is only required to supply 4 x 1072 amperes for approxi-

mately 3 seconds every T2 seconds.

L. COMMUTATOR

A 30 channel, single pole, 30 sample per second commutator is used to
time-multiplex the 22 kc subcarrier VCO. The commutator is a T.I.C. Model
R-6-15-30B1 and is connected break-before-make, with a duty cycle of approxi-
mately 85%. The increase in channel capacity thus provided permits backup
of all continuous channels against VCO failure, transmission of much opera-
tional data such as instrument temperature, battery condition, etc., and is
also the prime data channel for the antenna capacitance measurement.

The commutator channel assignments are shown in Table III below.
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TABIE IIT
Commutator
Segment No. Function

1 Antenna Bridge Input

2 Antenna Bridge Output

3 0 Volt Calibration

L +4.04 Volt Calibration

5 0.75 Mc Radiometer [ey 4t

6 1.225 Mc Radiometer [ey dt

T 2.00 Mc Radiometer [eg dt

8 -32 Volt Main Battery

9 +14 Volt Main Battery

10 Antenna Bridge Temperature

11 Antenna Bridge Input (Cross-strap to 1)
12 Antenna Bridge Output (Cross-strap to 2)
13 +130 Volt B+ Monitor

1h +200 Volt B+ Monitor

15 -25.2 Volt Filament Monitor

16 Receiver Audio Commutator Position
17 0.75 Mc Radiometer Audio Output

18 1.225 Mc Radiometer Audio Output

19 2.00 Mc Radiometer Audio Output
20 Nose Cone Posgition Monitor

2L Receiver Deck Temperature
o2 Antenna Bridge Output (Cross-strap to 12)
23 Antenna Right Side Position Monitor
ok Antenna Left Side Position Monitor
25 Noise Generator Diode Current

6 Noise Generator Oven Temperature
27 Tumble Axis Aspect Photocell

28 Spin Axis Aspect Photocell

29 +9 volt VCO Power Monitor
30 Antenna Power Monitor

5. TRANSMITTER AND RF POWER AMPLIFTER

The decision to fly a transmitter followed by an RF amplifier with an out-
put of 10 watts was arrived at after discussion with the telemetering group at
the NASA Goddard Space Flight Center. At the time, there was some gquestion
regarding the wisdom of having only 2 watts of radiated power. Furthermore,
there was no information what so ever on satisfactory rocket-borne telemetering
antennas for the Journeyman D-8 vehicle. This rocket had never been fired
from Wallops Island, Virginia. Calculation showed that for a rocket antenna
with an isotropic radiation pattern, a ground station antenna with 15 db gain
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and a receiver with a noige figure of L db, the poorest signal-to-noise ratio
would be approximately at apogee where the margin of safety would be 12.6 db
for 2 watts of radiated power. Since the rocket antenna could easily have
pattern asymmetries of 6 db or more, it was decided to transmit at the 10 watt
level. Calculations also indicated that telemetering signals during the last
100 miles of altitude on the down leg of the trajectory would not be received
because of horizon cut-off. It wag therefore requested that the NASA Bermuda
tracking station be operational so that the data obtained during the iono-
sphere bottom-side breakthrough could be recovered.

The telemetering transmitter selected for this payload is an EMR Model
121C-28-240.2 Quartz-Line-Controlled true FM transmitter, operating at 240.2
Me. It has a measured output of slightly less than 2 watts into a 50 ohm
load and a nominal carrier deviation of 125 kec. Its spurious output ig at
least 60 db down with respect to the carrier. It weighs 23 ounces and power
requirements are 27.5 volts at 150 ms for filaments and 200 volts at 65 ma
for the plate supply. The transmitter output is fed directly into a United
Electrodynamics type PA-10 R¥ power amplifier. This amplifier was chosen in
preference to an EMR type because its B+ voltage requirement is the same as
the transmitter. The measured power output of this amplifier is a nominal
10 watts into a 50 ohm load when driven by a nominal 2 watt transmitter. The
actual pre-takecoff power output was measured as 8.6 watts. Input and output
impedance is 50 ohms, bandwidth is 4 Mc and overall efficiency is 25%. The
filament power required is 27.5 volts at 200 ma and plate power is 200 volts
at 90 ma.

The 200 volt DC to DC converter, ite pre-regulator, the transmitter and
its power amplifier are all installed in a pressurized container to assist in
heat transfer and preclude the possibility of RF voltage breakdown. The com-
plete package weighs 8.21 pounds and is mounted at the top of the payload. It
also serves as a support Tor the telemetering antenna mounted above it. Con-
struction details are shown in Figures 4% and Lk,

6. TELEMETERING ANTENNA

Tdeally, the telemetering antenna radiation pattern should be symmetrical
about the payload spin axis, and have its major lobe directed to the rear of
the vehicle. Some power should be radiated forward however, so that signal
reception will be assured if the payload tumbles after rocket burnout and nose
cone ejection. In addition, since the protective fiberglas nose cone is
ejected, the antenna must be mounted beneath the nose cone and capable of radia-
ting during the powered portion of the flight. The antenna must be mounted as
far away from the radio astronomy antenna as possible to minimize the transfer
of telemetering power into the radiometers and antenna bridge. Since the ve-
hicle spin stability is improved if the radio astronomy antenna is mounted at
the base of the payload, the telemetering antenna must be located at the top
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of the payload where the nose cone diameter is reduced. This in turn reguires
the use of a deployment scheme for the telemetering antenna and also interposes
the radio astronomy antennas between the telemetering antenna and the ground
receiving stations.

Ag a result of the above criteria it was necessary to undertake a develop-
ment program to select a suitable antenna. Several basically different antenna
designs were constructed and radiation patterns were measured on a full size
mock-up of the paylcad with the radio astronomy antennas in place. The design
finally chosen is a modified turnstile antenna shown in Figure 45. A normal
turnstile is simply a pair of dipoles positioned perpendicular to each other and
driven 90° out of phase. The modified turnstile shown here consists of 4 monopoles
positioned every 90° around an 8 inch diameter cylinder. Each monopole is phased
90° from the adjoining monopole, with the phase increasing for each element counter-
clockwise as viewed from the tail of rocket. This selection of electrical phasing
produces right-hand circular polarization. Figures 46 and 47 illustrate details of
the phasing network.

Each monopole is approximately %/h long. The length is trimmed until the real
part of the monopole impedance equals the TO ohm impedance of the phasing harness.
At the output of the summing junction, a single-stub matching cable is used to
transform the impedance to 50 ohms.

The monopoles are fabricated of silver plated 10 mil tempered beryllium
copper strips, with a slight upward concavity, perpendicular to the long dimension.
This shape is similar to that used in flexible steel tape measuring rules.

Nose cone ejection initiates telemetering antenna deployment by means of the
assembly shown in Figure 48. When the nose cone is to be installed on the payload,
the monopole tips are folded upward and secured under a phenolic plug. The plug is
held in place temporarily by a long threaded rod. The rod projects through the
central hole in the nose cone ejection spring assembly as the nose cone is lowered
in place over the payload. In this position the monopole tips are pressed against
contacts on the inner surface of the plug support. The L4 contacts connect 1500
ohm terminating resistors to the ends of the monopoles so that the RF power ampli-
fier remains terminated with 50 ohms i20% when the telemetering antenna is unde-
ployed. 1In this position the radiation pattern is not ideal, but 1t is adequate
for the initial portion of the flight. After the ejection spring assembly is
cocked and seated properly on top of the phenolic plug, the long threaded rod can
be unscrewed and removed. During nose cone ejection, the spring loaded phenolic
plug is released and alsc ejects. As soon as the nose cone clears the top of the
payload, the telemetering monopoles spring into their stable position which is a
plane perpendicular to the payload spin axis. Release of the phenolic plug also
actuates a switch which signals nose cone ejection via the telemetering system.

. Measured radiation patterns obtained from a full-scale model of the payload
with radioc astronomy antennas deployed are shown in Figures M9, 50 and 51.
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Since the antenna test range used was less than ideal, the patterns and magni-
tudes shown are probably not precisely correct. Enough work was done with
various antennas however to provide reasonable confidence in the results. On
each polar pattern, the O db point corresponds to the signal received from a
A/E dipole antenna transmitting an equal amount of power. On these plots,
180° corresponds to reception of the signal by a ground station looking up at
the tail of the rocket. As viewed from the ground, the transmitted signal is
right-hand circularly polarized which complies with the standard polarization
of most ground station helical antennas., It is of interest to note that many
of the nulls, particularly in the forward direction of the right circular
polarized pattern, are filled in when viewed with a left-hand polarized ground
station helix. Because of this fact, a left-hand helix is used to feed a sepa-
rate telemetering receiver. This precludes data loss in case the rocket tumbles
and presents low signal levels to the right-hand helix.




POWER SUPPLIES

1. BATTERIES

The primary power for all portions of this experiment is supplied by
33 type HR-5 Yardney Silvercels. Ten of the cells are connected in series to
form a +14 volt battery and the remaining 23 are connected in series to form
a -32 volt battery. The +1k volt battery is also tapped at approximately +7
volts. Each cell is rated at 5 ampere hours at T5°F which allows a minimum
safety factor of 2 for the period of a normal rocket flight of approximately
30 minutes. The choice of these voltages and capacities is dictated by the
need for high reliability in the power supplies. At least one cell in each
battery can be completely discharged, forced to reverse its polarity, and be-
gin charging in the oppositedirection without affecting normal payload opera-
tion. The +1L4 volt battery has a somewhat greater safety factor because it is
impossible to exactly balance the total load between each battery.

These cells are freely vented to their surroundings and thus not protected
from the vacuum which exists during flight in the unpressurized nose-cone.
Experiments have shown that although the battery electrolyte does boil during
simulated space flight, the electrolyte loss in 30 minutes is not excessive.
The paylocad test and environmental program (T. and E.) however often requires
a number of hours in a hard vacuum. For this reason, it is necessary to enclose
the batteries in the pressurized container shown in Figure 52. This adds T
pounds to the total battery and hold-down hardware weight of 18 pounds.

One further consideration involved in the use of silver-zinc cells is the
variation in terminal voltage during battery charge and discharge. The trickle
charge terminal voltage of a fully charged cell is 2.0 volts at 75°F. This
voltage increases somewhat if the cell is cold and decreases when the cell is
hot. When a cell is discharging at the 1 hour rate (i.e.»5 amperes ), the
terminal voltage at the 50% discharge point is 1.4 volts. If the cell is cold,
the voltage is even lower and vice versa. This means that the negative battery
can vary from -32 volts to -U46 volts at room temperature. If the battery is
cold, the voltage range will be even greater. The positive battery varies from
+20 volts to +14 volts. This variation of more than 40% in terminal voltage
must be well tolerated by all circuits supplied directly or indirectly by the
primary batteries.

2. DC TO DC CONVERTERS

Two DC to DC transistorized converters are used in this experiment. One,
a 200 volt, 200 milliampere converter, shown in Figure 57 supplies B+ power to
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the telemetering transmitter and the telemetering RF power amplifier. The
gsecond converter, a 235 volt, 200 milliampere unit shown in Figure 53 supplies
pover to the +130 volt and the +200 volt regulators for receiver and preamp-
lifier B+, respectively. Both converters are conventional common emitter satu-
rating core type power multivibrators. The switching rate for both units is
approximately 3.5 kilocycles. Input currents for the transmitter and receiver
converter are 1.4 and 1.3 amperes respectively.

It was known that this type of converter is capable of generating a con-
siderable amount of pulse type RF noise so careful attention was paid to the
converter input filtering. In addition to the converter pre-regulators dis-
cusced below, additicnal filtering was also required in two -32 volt supply
lines before the interference in the radiometer output became undetectable.
Proper methods of grounding to avoid ground loops and inductive paths also
proved ta be important.

Construction details of the +235 volt radiometer converter are shown in
Figure 54. The +200 volt transmitter converter is mounted in the pressurized
telemetering transmitter container shown in Figure 55.

3. REGULATORS

The eight power supply regulators used fall into 3 categories. One simple
uncompensated Zener diode is used for regulation of the supply to the bridge
oscillator. Three Zener diode biased emitter follower preregulators are used
for the transmitter DC to DC converter, the transmitter filaments and the radiom-
eter DC to DC converter. And finally, there are four highly compensated series
pass transistor regulators for the radiometer filaments, preamplifier B+, receiver
B+ and the +9 volt VCO power.

The pre-regulators shown in Figures 56, 57 and 58 are used to reduce the
battery supply voltage variations and decouple the converter noise from the main
battery lines. The Zener diodes used in these regulators are selected to achieve
the desired input voltage to their respective loads. The transmitter preregulator
is located inside the telemetering transmitter container to minimize the radiation
of converter noise pulses and take advantage of the convective cooling afforded by
the air inside the pressurized container.

Filament and plate power for the three radiometers must be well regulated if
stable operation is to be achieved. With a possible variation of HO% in the bat-
tery supply voltage, the use of regulators with high internal loop gain is re-
guired. Figure 59 shows the -25 volt, 1.5 ampere radiometer filament regulator.
Transistors T; and T, are paralleled series passing elements used to drop the
input voltage the reguired amount. Resistors R; and R, also assist in dropping
a portion of the input voltage. T3 and T4 are cascaded emitter followers pro-
viding sufficient current gain to drive the bases of T; and Ts. The error
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amplifier, Tg compares a fraction of the output voltage with the reference
Zener diode Do voltage, and amplifies this difference. Resistor R, applies

an error gignal directly from the input to improve the compensation of input
voltage variations. Temperature compensation is effected by addinga sufficient
amount of positive temperature coefficient resistance to Rg. Typical perform-
ance of this regulator is as follows:

1. The output voltage is reduced by 1 mv for each 20 ma
increase in current. This is an egquivalent output impedance
of 0.05 ohm. Full load current is 1.5 amperes.

2. The output voltage changes less than 6 mv for each 1 volt
change in the input voltage.

3. For a constant input voltage, the output voltage changes less
than 10 mv between LO°F and 120°F ambient temperature. Con-
struction details of this regulator are shown in Figure 60.

Both B+ regulators are very similar in design as shown in Figure 61. Both
receive their input power from the 4235 volt radiometer converter which has a
fairly constant output voltage because of its preregulator input. Transistor T;
is the series passing element driven by the emitter follower connected transistor
T-. The error amplifier, T4, compares a fraction of the output voltage with the
reference Zener diode Dg voltage and amplifies the difference. Additional volt-
age amplification is obtained from Ts. Diode Dy protects T; from accidental over-
voltage. One difference is the use of a power Zener diode D; used to drop 70 volts
at the input of the +130 volt regulator only.

The amplifiers in each B+ regulator have the same operating voltages when
referred to the positive polarity side of the regulator ocutput. The error
divider ratio and dropping resistors Rs and Rg for the Zener diodes have the
values as indicated for the +130 and +200 volt operation. Fach regulator will
supply at least a 70 ma load. Temperature compensation is done with Rg in the
manner described for the -25 volt filament regulator.

Typical performance of this regulator type is as follows:

1. Less than 10 mv change in output occurs from no load to full
load of 70 ma. This is an output impedance of 0.1k ohm.

2. The output voltage changes less than 0.5 mv per volt of input
change.

3. For a constant input voltage, the output changes less than
50 mv between LO°F and 120°F.

Figure 62 is a photograph of the B+ regulator.
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The +9 volt regulator shown in Figure 63 is a low voltage version of the
B+ regulators and its electronic performance is similar. Its characteristics
are as follows:

1. The output voltage varies less than 10 mv from no load to
full load of 100 ma. Its output impedance is less than 0.1 ohm.

2. The output changes less than 1 mv per volt of input change.

3. For a constant input voltage, the output varies less than
10 mv between 4O°F and 120°F.

This circuit board is shown in Figure 6k4.
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NASA ACCELERCMETER PACKAGE

As a result of prior vehicle in-flight performance malfunctions, the
Vehicles Section of NASA Goddard Space Flight Center required that an
accelerometer oriented to measure acceleration along the thrust axis be in-
corporated in the payload. The accelerometer package including a voltage
regulator and a VCO was supplied by GSFC. The unit weighed 1.3 pounds and
was furnished fused power from the +9 volt regulator. The VCO was also in-
flight calibrated and input signal limited along with the other VCO's.
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INSTRUMENTATION SYSTEM

1. REMOTE CONTROL AND INTERCONNECTIONS

Remote control of the complete system is accomplished with a nine wire
pull-off plug cable between the payload and a remote control box which can
be located more than 300 feetaway. Batteries can be monitored and charged,
all equipment can be turned on and off and checked for proper operation with-
out accessto the payload. This is a great convenience during the firing
count-down because any operational delays can be managed without difficulty.
Normally, the total payload power regquirements are supplied externally until
just before rocket firing, at which time the system is switched to internal
battery power and the pull-off plug is removed.

Three Ledex stepping switches designated "Receiver) "Transmitter"” and
"Monitor" in Figure 37 execute all remote control and monitor functions. They
can be energized conly by switched external power from the remote control box
shown in Figure 66. The control box is connected via the pull-off plug cable
and the payload interconnections shown on Figure 65. Both receiver and trans-
mitter control Ledexes are wired as 6-position switches. The monitor Ledex is
wired as a 12-position switch. The functions performed by these switches are
summarized in Table IV.

The monitor Ledex output is connected to voltmeter M1 in the control
box. The meter reading for normal operation is known by the remote control
operator and thus any possible malfunctions can be noted and diagnosed. The
monitor Ledex has a separate meter M2 that indicates which monitor Ledex posi-
tion has been selected.

The other two meters M3 and ML indicate the -32 volt and +14 volt external
supply current to the payload at all times. This current is furnished by inde-
pendently controllable power supplies external to the control box. Merely by
adjusting these supplies, all or any intermediate level of external power can
be metered to the payload.

Provision is also made to continuously monitor the receiver deck tempera-
ture so that during long operatiocnal holds in the rocket firing count-down, it
is possible to monitor the payload temperature rise. The temperature rige is
caused by the dissipation of approximately 230 watts in the payload when the
batteries are fully charged and all power is supplied externally. During flight
the dissipation drops to approximately 160 watts. The payload normally has
enough thermal capacity to limit the temperature rise to a satisfactory degree.
The fiberglas nose cone is an excellent thermal insulator however so that
full power operation prior to teke off cannot be maintained indefinitely. The
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TABLE IV

Switch
Position

Function

WD e

o\

OV 03 OV\J W P

=~
gy

B.

A,

Receiver Control Ledex Functions

OFF

All radiometer filaments ON
Noise generator oven ON

+9 volt regulator ON
Receiver +130 volt B+ ON
Preamplifier +200 volt B+ ON
Sequence timer ON

Bridge power ON

Noise generator oven OFF
Fly position

Transmitter Control Ledex Functions

OFF

Transmitter and RF amplifier filaments ON
Transmitter B+ ON

VCO power ON

Regulated +9 volt switched ON

Commutator motor ON

Fly position

C. Monitor Ledex Functions

~52 volt battery monitor
Transmitter control Ledex position
0.75 Mc receiver No. 1 [ey dt
1.225 Mc receiver No. 2 [eq dt
2.00 Mc receiver No. 3 [ey dt
Regulated +200 volt monitor
Regulated +130 volt monitor
Regulated +9 volt monitor
Antenna bridge output

+14 volt battery monitor
Receiver control Ledex position
Master ON (fly) position
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normal procedure is to return to position No. 2 on the control Ledexes until
the firing count-down is resumed. This condition can be maintained as long as
is necessary.

Prior to removal of the pull-off plug before take off, it is mandatory that
all control circuits be set up properly. The receiver and transmitter Ledexes
must be in position 6 and the monitor Ledex must be in positon 12. Since it is
possible to accidentally position these Ledexes in the wrong position a safety
provision has been incorporated in the Ledex circuit wiring. One switch section
on each Ledex closes only when the ledex is in the "fly" position. All circuits
are wired in series with a supply voltage to the monitor Ledex position 12. If
the operator observes an up-scale reading on the monitor output meter M, in
position 12, he can be assured that all control Ledexes are properly set.

Because it has been reported that pull-off plugs are occasionally damaged
during pull-off just prior to vehicle lift-off, this possibility must be guarded
against. In this design, the pull-off plug can suffer any combination of short
circuits between pins or to ground, without affecting any portion of the system.
This is accomplished by placing diodes in series with the two battery charging
lines. Placing a ground on either line at the pull-off plug merely reverse
biases the diode and no current can flow. The other lines with voltage present
are the monitor lLedex position and output circuits. In each case, a large series
resistor in the lines prevents excegsive current flow.

Iocation and interconnections of all subsections of the payload are shown
in Figures 65 and 67. The "A" deck shown at the top of Figure 65 is the base
of the instrumentation rack. It is mounted on top of the drum-shaped nose-cone
extension tube shown at the bottom of Figure 67. The extension section in turn
is bolted to the thrust face of the fourth stage rocket motor. The extension
section contains batteries and timers used to actuate the nose cone release and
vehicle despin mechanisms. A plan view of the location of all major assemblies
is shown to the left of the interconnections for each deck. BEach terminal shown
in a box is accessible for disconnect or check. The number on each line to each
terminal refers to the origin or destination of that line. There are two main
vertical cable runs (I and II) with branches at each deck. All branches shown
enclosed by ovals are laced together. Coaxial cables are shown only at their
termination points. Extensive use is made of barrier strip type terminals.
Although this adds slightly to the overall payload weight, the problems of
testing, interference tracing, calibration and trouble shooting are greatly
minimized. Wiring used throughout is silver plated, high strand count, with
spiral wrapped teflon insulation.

2. MECHANICAL DETAILS

Figure 68 is a scale drawing of the instrumentation rack structure. It
is fabricated of magnesium plates and hollow tube vertical members, most of
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which are heliarc welded in place. One post between the B and C deck is
removable and the D deck is completely bolted in place. This construction
technique requires that all mounting holes in decks A and B be completed
before welding. Additions or modifications are difficult, but not impossible,
because the space between plates A,B, and C does permit the entry and use of
hand tools.

A 0.042 inch thick aluminum outer skin is bolted to each deck with 2L
flat-head screws. This forms a stressed skin construction which is very stiff.
Early tests with a payload rack which used smaller diameter solid vertical
members which were bolted in place in a gtaggered pattern and which did not
use the stressed outer skin, exhibited some very undeslrable modes of vibra-
tion. The present structure weighs 5 pounds more than the early model, but
no vibrational problems appear to exist.

Placement of subassemblies is determined by consideration of electrical,
mechanical, accessibility, thermal and vehicle spin and balance requirements.
With the configuration finally arrived at, only 0.8 pounds had to be added to
comply with the 1 ounce static and 20 ounce inch-sqguared dynamic balance limits
for the Argo D-8 vehicle.

Table V is a compilation of payload subassembly and nose cone hardware
weights.
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TABLE V

Ttem Weight
Pounds Qunces

Instrumentation rack including skin

(skin only: 2 1lb, 6 oz) 29 8
Telemetering transmitter including container

(pressurized container only: 2 1lb, 6 oz) 8 11
Telemetering antenna and phasing cables 3 11
3 radiometer receilvers 5 1
Remote control and VCO assembly 5 T
Sequence timer 2 6
Radiometer DC-DC converter 2 9
-25 v filament regulator 0 15
+200 v B+ preamplifier regulator 0 13
+130 v B+ receiver regulator 0] 13
Telemetering filament preregulator 0 3
VCO calibration batteries 0 5
Radiometer DC-DC converter preregulator 0 3
Silvercell batteries and container

(pressurized container only: 7 1lb, O oz) 18 3
2 radio astronomy antennas and mounts L 3
Random noise generator, oven, and transformer 1 6
Preamplifier first stage, antenna switch,

and bridge 2 8
Preamplifier second stage 0 15
Plugs, cable harness, filters, etc. 6 L
Balance weight 0 13
NASA accelerometer 1 5
Outer nose cone with thermo lag coating 51 5
Nose cone locking ring and despin weights T 10
Extension section including wiring 9 10

Total payload at takeoff 145 1b 1 oz
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ROCKET DESCRIPTION AND PREDICTED PERFORMANCE

The Argo D-8 vehicle shown in Figure 69 is a four-stage solid pro-
pellant sounding rocket designed to be fired from a zero length launcher.
The first three stages are fin stabilized and the fourth stage i1s spin
stabilized. The maximum spin rate is 7.5 revolutions per second. With a total
payload weight of 145 pounds, the predicted peak altitude is approximately 1300
miles for an 83° launch angle. The vehicle staging consists of a first stage
Sergeant TX 20-6 with two Recruit XM-19 booster rockets attached to the sides.
The booster rockets give a high initial acceleration to build up the velocity
immediately after release from the launcher. Each recruit burns for 1.8 seconds
and has a thrust of 38,000 pounds. The second stage is a Lance XML5 which ig-
nites after a 10 second first stage coast interval. The third stage is another
lance XML5 rocket. Its fins are canted so that at burnout, the vehicle spin
rate is increased to approximately 7 rps for fourth stage spin stabilization.
The fourth stage is an Altair X248-A6 which ignites after a 13 second third
stage coast interval. The X-248 remains attached to the payload throughout
the flight. At 180 seconds the nose cone is spring ejected and a "yo-yo" de-
spin mechanism is deployed. The vehicle spin rate is reduced by a factor of
gbout 10 with this despin technique.

Table VI presents a summary of the rocket predicted performance, and
sequence of events.
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PAYIOAD EVIRONMENTAL TEST REQUIREMENTS

It is standard practice to subject rocket payloads to a series of rigorous
tests to determine functional reliability of all components and construction
techniques. The first payload constructed is designated as the prototype. It
is subjected to environmental rigors more stringent than those expected for trans-
portation, handling, prelaunch tests, launch, boost phase and coasting flight. A
second model designated the flight unit is subjected to tests which demonstrate
the ability of the design to meet all performance requirements without harmful
degradation at the expected flight levels.

The required test facilities available at GSFC and the tests prescribed by

NASA for The University of Michigan Radio Astronomy Observatory Cosmic Noise
Rocket Payload designated NASA 11.02 UR are itemized in the Appendix.
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TELEMETERING GROUND STATION

A complete telemetering ground station has been assembled for this ex-
periment. It provides a means to perform pre-flight system checks, in-flight
data recording, real time readout and post-flight data reduction. A photo-
graph of the telemetering ground station set up in the Wellops Island Block
House is shown in Figure TO. The tape recorder rack contains the main items
of the FM/FM telemetering station. Below the Ampex Model CP-100 tape recorder
is a Nems-Clarke Model 1432 phase lock FM receiver. Below it is a bank of six
EMR Model 167-0O1 phase lock subcarrier discriminators. An interconnect and
control panel is below the discriminators, followed by a Nems-Clarke Model 200-3
spectrum display unit for the FM receiver. The bottom panel is an EMR Model 101-A
crystal reference oscillator and mixer amplifiers for the tape recorded subcarrier
oscillator tape speed compensation system. The right hand rack contains another
FM receiver, a CMC Model T2TA counter, a H-P Model 200CD audio oscillator, a
special TO watt 135 cycle power amplifier, a NLS Model L84 digital voltmeter,

a Boonton Model 202 FM/FM signal generator and a H-P Model 100D precision fre-
guency standard. Except for the counter and digital voltmeter, all equipment

in the right hand rack plus an antenna preamplifier not shown was borrowed from
other NASA supported groups at The University of Michigan. To the left of the
two racks is a CEC Model 5-124 direct recording oscillograph with seven active
galvanometers for quick readout information. A Tektronix Model 533 oscilloscope
for waveform monitoring completes the telemetering ground station. To the right
on the table is the rocket remote control box and the two power supplies for pay-
load battery charging.

For telemetering reception and recording during rocket flight, the ground
station is arranged as shown in Figure Tl. 1In general, this is typical of a
high precision system with extra features added to optimize its performance for
this application. Following signal capture by the right-hand helical antenna
with a gain of 20 db, the signal is amplified by a 33 db gain, 5 db noise figure
preamplifier at the antenna site. The amplified signal enters receiver No. 1 and
is demodulated. The resulting composite subcarrier signal is fed to a mixer
amplifier where a precision 100 ke sine wave is added to the subcarriers. Intro-
duction of the 100 kc signal provides a reference frequency for the tape speed
compensation channel which is used during tape playback. The mixer output goes
to two direct channels on the one inch T channel tape recorder. The direct chan-
nels have a frequency response from 200 cps to 100 kc at a tape speed of 30
inches per second. This speed allows approximately 34 minutes of uninterrupted
recording time. Two channels are used to preclude the loss of data if one chan-
nel fails during recording. From Receiver No. 1, the signal also goes to the
subcarrier discriminators via the receiver selector switch. Each discriminator
has an input band-pass filter tc select the appropriaete channel as shown. The
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discriminator output is a replica of the corresponding payload telemetering
input voltage and is recorded on the direct readout recording oscillograph.
Provisions are also made to record the discriminated output on the FM channels
of the tape recorder which have a frequency response from O to 10,000 cycles
per second.

The receiver signal strength information is displayed on a meter at the
antenna location so that the operator can manually track the antenna by posi-
tioning for maximum signal strength. Signal strength from both receivers is
also time multiplexed with a 60 cycle chopper and recorded on a FM tape channel.

Tgke-off time is recorded both on tape and the oscillograph. At take-off,
a microswitch on the rocket launcher rail actuates. Relay circuits shown in
Figure 72 in the ground station lock on, and key a 10 kc signal to the tape
recorder and 1 cycle per second pulses to the time line generator in the os-
cillograph. The 10 kc¢ timing channel also accepts audio signals from a micro-
phone and amplifier shown in Figure T3 for voice recording before and during
the rocket flight. During playback, a filter separates the two signals.

Signals from the left-hand helix are handled in much the same fashion.
The receiver selector switch allows transfer of either receiver composite sig-
nal to the discriminator inputs. Only one tape channel for direct recording is
provided for this signal because it is not expected to be as good as that from
the right hand helix.

The overall circuit for the telemetering ground station is shown in Figure
T4. Not shown are the circuits used for recording take-off time and automatic
three-step calibration of the direct (FM) channels of the tape recorder. The
take-off circuit shown in Figure T4 is actuated from a normally closed micro-
switch on the rocket launcher rail. At lift-off, this switch opens and RY;, is
deenergized. It cannot be energized again until the "arm" switch is depressed.
Requiring the take-off switch to open on lift-off and arranging to lock out the
relay provides a measure of fall gafe protection. Because of the location of
the take-off switch, the wires are likely to burn off at rocket ignition and thus
cannot be depended on for continuity.

Automatic three-gstep calibration of the tape recorder FM channels is de-
sirable because these channels do not have playback tape speed compensation.
Any drift caused by speed variation cannot be separated from a signal level
change without resort to a calibration procedure such as this. Since the
discriminators are arranged to vary from -2.5 volts to +2.5 volts for O to +5
volt variations in the rocket payload, -2.5, O and +2.5 volt calibration setups
are programmed automatically for two seconds once every two minutes by the ground
station calibrator circuit shown in Figure T75. In addition to the automatic
calibration sequence, a manual switch allows additional calibrations to be made
at any other time. This switch does not disturb the regular two minute calibra-
tion cycle.
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The tape recorder and discriminators are also used for tape playback.
As Figure T4 indicates the cable patch panel is arranged to transfer the
played-back composite signal from the signal delay line into the discriminators
for demodulation. In this mode, the 70 ke tuning units for Channel No. 6 dis-
criminator are removed and 100 ke units are substituted. If the tape recorded
signals contain any speed variations, they appear as steady-state offsets or
fluctuations in the 100 ke discriminator output. This error signal is inserted
at the proper point in each of the other discriminators. Cancellation of out-
put variations due to tape speed changes is thus accomplished. The composite
signal to the 100 kc¢ channel does not pass through the signal delay unit. In
this way, the proper time delay between the tape speed error signal and the other
discriminator outputs is maintained. When properly adjusted, this technique pro-
duces an improvement of at least 100:1 in tape recorder flutter and wow compared
to an uncompensated system.

The 10 ke timing signal which is keyed "on" at take-off provides a time
base for all events that occur during flight. The filtered 10 kc waveform
drives a digital counter. Every 10,000 counts 1s one second of flight. 1In
effect, an accumulating counter can thus be used to assign a serial number to
each event which then can be uniguely related to the instant of take-off within
#2 x 10° ' seconds. The oscillograph time lines perform the same function al-
though the absolute magnitude of the uncertainty is somewhat larger.

Figure 76 shows a section of a typical telemetering record. All data is
encoded in the form of oscillograph trace deflections from the reference traces
at the record top and bottom. The in-flight calibration sequence provides a
means to determine the trace "zero level" and the trace deflection factor for
the L.OL4 volt calibration level. One second time lines and digital time trace
derived from the National Bureau of Standards WWV time signal allows precise
time resolution of all events.
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TELEMETERING DATA REDUCTION

Manual data reduction from records such as shown in Figure 78 is very
tedious. Each second of flight, the trace deflection for each channel must
be scaled, corrected for zero level and then converted to a true voltage. In
many cases, this procedure must be done as often ag ten times a second where
fine detail in the record is important. On the commutated channel, this pro-
cedure must be repeated thirty times a second if a complete readout is required.

The true voltage readings and their associated times from take-off are next
used to enter appropriate calibration tables or curves for each channel. If
necesgary, corrections for factors such as ambient temperature, base-line shift
and gain variations must also be introduced. The final result is a tabulation
of the measured parameters with respect to time from rocket take off. Thesge
data can then be related to altitude with the altitude versus time trajectory
data.

The above procedure can be automated to a considerable extent with a con-
sequent reduction in time and cost of data reduction, and an increase in accu-
racy. Figure 77 illustrates an analog to digital data conversion and oscillo-
graph recording system used to assist in reduction of data from the rocket
flight. This data logging section and the LGP-30 computer were loaned by other
groups at The University of Michigan. The A to D system is limited to a single
channel of data input at a rate of 10 samples per second. Each sample consists
of sign, U4 binary coded decimal digits, and the LGP-30 computer stop code. The
maximum data rate is limited by the output paper tape punch which has a maximum
rate of 15 samples per second. This rate precludes automatic reduction of the
commutated channel. Fortunately, it is not necessary to readout all 30 segments
each second, since many have a very slow rate of change.

If the system shown in Figure 77 is arranged to reduce a radiometer out-
put channel, it is very important to be able to assign a time from takeoff to
each sample. The data logging system itself has no provision for including this
information, so indirect means must be used. This is done by using the 10 ke
precision timing signal (on the tape) which is keyed "on" at take off. The 10
ke signal is filtered from the voice channel and routed to the counter. The
counting mode is set for total counts and in effect functions as a freguency
divider, in this case, by 1000. The resultant 10 pulses per second are used to
control the digitization sample rate of the A to D converter. Time from take-
off is thus uniquely associated with each sample point throughout the flight.

The first step in the data reduction is to take the digitized raw data
and enter the LGP-30 computer. A program is written to "serialize" the data.
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Thig consists of adding a sequential serial number at the beginning of each
20 data samples which will hereafter be called words. The computer also adds
typewriter carriage return and spacing commands to automate the readout, and
prints out a new punched paper tape. This tape i1s called the serialized raw
data tape and now is printed out or "listed" by a paper tape controlled type-
writer called a Flexowriter. Over 16,000 four digit numbers plus sign are
printed out for each channel for a 1525 second flight.

The next step is the reduction of the serialized raw data to true volts.
It will be recalled from an earlier section that the ground station VCO dis-
criminator outputs are arranged to have symmetrical plus and minus voltage
variations as the VCO input voltage varies from O to +5 volts. ILevel shift
and multiplying factors must be derived and applied to convert the data to the
original VCO input voltages. This is done by manually referring to the raw
data during the VCO in-flight calibration sequences. A table of factors and
the serialized intervals over which they apply is prepared along with the neces-
sary programming and the computer is again reentered. The computer output is
now a serialized true voltage punched tape which again is listed. This listing
is done to check the accuracy of the computer results by observing whether the
true voltages during VCO calibration are as expected. Spot checks can also be
made against the oscillograph recordings. Gross errors can readily be seen,
but little else, because the digital system has an inherent accuracy of at
least 10 times that of the analog records. Experience has shown that as con-
fidence is gained in the automatic data reduction program, less intermediate
data listing is required. With the relatively low listing rate of the Flexo-
writer, less listing materially decreases the time required to process the data.

One further step in data reduction can now be done. The radiometer pre-
flight noise calibration data in the form of tabulated values of TARA input
versus [eg dt radiometer output can now be stored in the computer. A program
for conversion from true volts to uncorrected T,R, can be formulated and a
final computer run will produce an output tape of serialized uncorrected TARA.
Although even further computer reduction is possible, it was not carried out
in this program. Corrections for radiometer no-noise and noise calibrations
were performed manually.
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APPENDIX
ENVIRONMENTAL TESTS

The following is a description of the environmental test program re-

quired by NASA for the prototype and the flight model instruments described
above.

General Instructions

TEST FACILITIES

General

The apparatus used in conducting tests shall be capable of producing and
maintaining the test conditions required, with the equipment under test installed
in/on the apparatus and operating or non-operating as required. Changes in test
apparatus conditions may be the maximum permitted by the test apparatus, but shall
not exceed the applicable equipment specification requirements.

Vo Lume

The volume of the test facilities shall be such that the bulk of the equip-
ment under test shall not interfere with the generation and maintenance of tesgt.

Heat Source

The heat source of the test facilities shall be so located that radiant
heat shall not fall directly on the equipment under test, except where applica-
tion of radiant heat is one of the test conditions.

Standard Conditions for Test Area

Normally checkout will be conducted at room-ambient conditions. Reversion
to "standard" conditions will be required only in the case of equipment malfunc-
tion or unresolved questionable operation. For this condition, standard condi-
tions are defined as follows:
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a. Temperature: 25 * 3°C (77° + 5°F).
b. Relative humidity: 55 percent or less.
c. Barometric pressure: Iocal ambient.

MEASUREMENTS

All measurements shall be made with instruments whose accuracy conforms
to acceptable laboratory standards, and which are appropriate for measurement
of the environmental condition concerned. If tests are conducted outside of
GSFC facilities, the accuracy of the instruments and test equipment shall be
verified before test, after test, and periodically as required by GSFC.

Tolerances
The maximum allowable tolerances on test conditions shall be ag follows:

a. Temperature: Plus or minus 2°C (3.6°F).
(Exclusive of accuracy of instruments.)
Relative humidity: Plus 3 percent minus 2 percent R.H.
Vibration amplitude: Plus or minus 10 percent.
Vibration frequency: Plus or minug 2 percent.
Additional tolerances: Additional tolerance shall be as
specified.

o o0 o

Vacuum Gages

The vacuum shall be indicated by a vacuum gage the sensing element of which
is located within the chamber test space. The gage shall measure the vaccum as
it exists at the payload.

TEST SEQUENCE

Prototype Flight Unit
Dynamic Balance Dynamic Balance
Spin Spin
Acceleration Vibration
Temperature Thermal Vacuum
Humidity
Vibration

Thermal Vacuum




Test Procedures

DYNAMIC BATLANCE

Although not an environmental test, balancing is necessary for a spin
stabilized payload and shall be performed prior to exposure to environmental
tests. Balancing is chosen as the first operation so that the adhesion and
effect of the balance weights on payload operation may be evaluated during
the course of the tests.

The payload, while non-operative, shall be balanced about the thrust
axis in accordance with the following:

60
)
Q
=
T —~
—
14} °
= Envelope of acceptable pay-
o g load balance restraints in
é\g relation to C.G. of payload.
A

Static Balance
(oz.-in.)

The payload and the fourth-stage (X-248) shall be balanced as a com-
posite unit wupon completion of all environmental tests.
SPIN TEST

This test will demonstrate the ability of the electronics and payload
structure to withstand the spin forces experienced during flight.
Pre-exposure Examination and Test

Before exposure to spin, the payload shall be visually examined and
functionally tested to assure correct performance.
Prototype Test

The payload, while in an operational condition normal to powered flight,
shall be spun about the thrust axis at 625 RPM for a period of 5 minutes.

b7




Flight Unit Test

The payload, while in an operational condition normal to powered flight,
shall be spun about the thrust axis at 500 RPM for a period of 5 minutes.
Post-exposure Examination and Test

After exposure to spin, the payload shall be visually examined and
functionally tested to assure correct performance.

ACCELERATION TEST

This test will demonstrate the ability of the electronics and payload
structure to withstand acceleration forces experience during flight.

Pre-exposure Examination and Test

Before exposure to acceleration, the payload shall be visually examined
and functionally tested to assure correct performance.

Prototype Test

The payload, while in an operational condition normal to powered flight,
shall be exposed to the following acceleration levels:

Direction Acceleration Duration
(Axis) (g's) (Minutes)
Thrust (+2) 50 5
Transverse (+X) 3 3
Transverse (+Y) 3 3

Post-exposure Examination and Test

After exposure to acceleration, the payload shall be visually examined
and functionally tested to assure correct performance.




TEMPERATURE TEST

The temperature test is designed to demonstrate the ability of the
payload to withstand the environment of temperature which could be en-
countered in shipment and storage of the payload if no attempt is made to
control the ambient conditions. The operational tests under temperature are
conducted before attemping thermal-vacuum testing of the prototype. They
serve to indicate the resistance of the degign to extremes of expected in-
flight temperatures plus a safety factor, and to give some assurance that
it is worthwhile to attempt to conduct the more complicated and expensive
thermal-vacuun test procedure.

Pre-exposure Examination and Test

Before exposure to temperature, the payload shall be visually examined
and functionally tested to assure correct performance.

Prototype Test

While non-operative the payload shall be subjected to a test chamber
temperature of -30°C = 2°C (-22°F) for a period of 6 hours followed by a
temperature of +60°C *2°C (138°F) for a period of 6 hours. The payload
shall be functionally tested at 25°C *# 5°C between and after the storage
temperature exposures to assure correct performance.

The chamber temperature shall then be lowered to a temperature of
-25°C £ 2°C (-13°F) and the temperature of the payload stabilized. The pay-
load shall be functionally tested to assure correct performance. The chamber
temperature shall be raised to +34°C * 2°C (93°F), and the temperature of the
payload stabilized. The payload shall be functionally tested to assure cor-
rect performance.

HUMIDITY TEST
The humidity test is designed to demonstrate the ability of the pay-
load to withstand the environment of humidity which could be encountered in

shipment and storage of the payload if no attempt is made to control the
ambient conditions.

Pre-expogsure Examination and Test

Before exposure to humidity, the payload shall be visually examined
and functionally tested to assure correct performance.
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Prototype Test

The payload, while non-operative ghall be exposed to a chamber
temperature of +30°C * 2°C (8 °F) with a relative humidity of 95% +3
-2% for a period of 6 hours.

Post-exposure Examination and Test

After exposure to humidity, the payload shall be visually examined and
functionally tested to assure correct performance.

VIBRATION TESTS

The vibration tests given herein are intended to provide assurance that
the payload will survive the expected flight environments and are applicable
to the complete payload in its powered flight configuration. The prototype
test levels are increased by 50% above the anticipated flight levels to pro-
vide a factor of safety in design. The vibration tests are based principally
on the excitations generated by use of the ABL-X-248 rocket motor. The vibra-
tion excitation shall be applied at the interstage connection between the
final stage and the payload. In establishing the test levels some allowance
has been made for excitation generated by earlier stages, aerodynamic distur-
bances and handling and transportation effects. The resonance test is re-
quired because of unique resonant burning observed in the X-248 rocket motor.

Pre-exposure Examination and Test

Before exposure to vibration, the payload shall be visually examined
and functionally tested to assure correct performance.

Prototype Test

The payload, while in an operational condition normal to powered flight
shall be exposed to the following vibration levels:

50




Sinusoidal Swept Freguency

Freqguency Tezt
Direction Range Duration Acceleration
cps =  Min. g. O-to-pcak
Thrust 5-50 1.6 2.3 (a)
(2-7 axis) 50-500 1.6 10.7
500-2000 1.0 21.0
2000-3000 0.26 54.0
3000-5000 0.3k 21.0 (b)
Total - 5.0 Min.
Lateral A 5-50 1.6 0.9 (a)
(X-X axis) 50-500 1.6 2.1
500-2000 1.0 4.2
2000-5000 0.6 17 (b)
Total = 5,0 Min.
Iateral B 5-50 1.6 0.9
(Y-Y axis) 50-500 1.6 2.1
500-2000 1.0 )
2000-5000 0.6 17 (v)
Total = 5.0 Min.
Sweep Rate: 2 octaves/minute
(a) Amplitude limited to 0.5 peak to peak.
(b) Within frequency limitation of vibration
generator.
Random Motion Vibration
Frequency Spectral
Direction Band Density
cps g2/cps g-rms
Thrust axis 20-2000 0.07 11.5
Transverse axes 20-2000 0.07 11.5
Duration: U4 minutes each direction
Total time: 12 minutes
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Control accelerometer response shall be equalized with peak-notch filteriza-
tion such that the specified PSD values are within * 3 db everywhere in the
frequency band. The filter roll-off characteristic above 2000 cps shall be
at a rate of LO db/octave or greater.

Combustion Resonance

Apparent Weight. The apparent weight of the prototype may be measured
at 600 cps. The amplitude values given below are based on an apparent weight
of 7 1b at this frequency. Correction of the amplitude in inverse pro-
portion to the actual apparent weight should be made, but in no case shall
the amplitudes be greater than those given. An alternate method may be sub-
stituted wherein vibration force is programmed into payload between 550 and
650 cps at £ 600 1b force thrust direction and * 100 lb force transverse di-
rection if a suitable force control is employed.

Combustion Resonance Vibration

Frequency

Di . Acceleration Test
irection cps O-to-peak Duration

Sec.,

Thrust axis 550-6 50 86 30
Transverse axes 550-650 15 30%

*¥30 seconds each axis.

Flight Unit Test

The payload, while in operational condition normal to powered flight
shall be exposed to the following vibration levels:
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Sinusoidal Swept Freguency

Freguency Test
Direction Range Duration Acceleration
cps Min. g, o-to-peak
Thrust 5-50 0.8 1.5 (a)
(2-Z axis) 50-500 0.8 T.1
500-2000 0.5 14
2000-3000 0.13 36
3000-5000 0.17 i (b)
Total = 2.5 Min
Lateral A 5-50 0.8 0.6 (a)
(X-X axis) 50-500 0.8 1.4
500-2000 0.5 2.8
2000-5000 0.3 11.3 (b)
Total = 2.5 Min.
Lateral B 5-50 0.8 0.6 (a)
(Y-Y axis) 50-500 0.8 1.b4
500-2000 0.5 2.8
2000-5000 0.3 11.3 (b)
Total - 5 Min
Sweep Rate: L octaves/minute
Amplitude limited to 0.5 peak to peak.
Within freqguency limitation of wvibration
generator.
Random Motion Vibration
Frequency Spectral
Direction Band Density
cps g2/cps g-rms
Thrust axis 20-2000 .03 7.8
Transverse axes 20-2000 .03 7.8

Duration: 2 minutes each direction
Total Time: 6 minutes
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Control accelerometer response shall be egualized with peak-notch filteriza-
tion such that the specified PSD values are within * 3 db everywhere in the
frequency band. The filter roll-off characteristic above 2000 cps shall be
at a rate of 40 db/octave or greater.

Combustion Resonance

Apparent Weight. The apparent weight of the flight payload may be
measured at 600 cps. The amplitude values given below are based on an
apparent weight of 7 1b at this frequency. Correction of the amplitude in
inverse proportion to the actual apparent weight should be made, but in no
case shall the amplitudes be greater than those given. An alternate method
may be substituted wherein vibration force is programmed into payload be-
tween 550 and 650 cps at * 400 1lb force thrust direction and * 67 1b force
transverse direction if a suitable force control is employed.

Combustion Resonance Vibration

Test
Direction Frequency Acceleration, g Duration
cps O-to-peak Sec.
Thrust axis 550-650 56 15
Transverse axes 550-650 8 15%

*15 seconds each axis.

Post-exposure Examination and Test

After exposure to vibration, the payload shall be visually examined
and functionally tested to assure correct performance.

Thermal Vacuum Test

This test will demonstrate the ability of the electronics and payload
structure to withstand both flight temperatures and pressure.

Pre-exposure Examination and Test

Before exposure to thermal vacuum, the payload shall be visually
examined and functionally tested to assure correct performance.
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Prototype Test
Low Temperature Vacuum

With the payload in the non-operative condition, the temperature of the
chamber shall be reduced to -30°C * 2°C (-22°F). Upon reaching temperature
stabilization, the payload shall be turned on and the chamber shall be evac-
uated to a pressure of 1 x 10"2 mm of Hg or less.

After a pressure of 1 x lO'11L mm Hg has been reached, the payload may be
turned off and the chamber shall remain stabilized at -30°C * 2°C for a pe-
riod of 6 hours. At the end of this 6-hour period, the payload shall be func-
tionally tested to assure correct performance. At the end of this performance
check, the payload may be turned off.

High Temperature Vacuum

At the conclusion of the low temperature vacuum exposure, the chamber
temperature shall be raised to +35°C * 2°C (95°F), allowed to stabilize at
this temperature, and held there for 6 hours. At the end of this 6-hour pe-
riod, the payload shall be functionally tested to assure correct performance.
The chamber temperature and pressure shall then be returned to normal room
conditions.

Flight Unit Test
Low Temperature Vacuum

With the payload in the non-operative condition, the temperature of the
chamber shall be reduced to -20°C + 2°C (4°F). Upon reaching temperature
stabilization, the payload shall be turned on and the chamber shall be evac-
uated to a pressure of 1 x 105 mm of Hg or less.

After a pressure of 1 x lO'u mm Hg has been reached, the payload may be
turned off and the chamber shall remain stabilized at -20°C * 2°C for a pe-
riod of 6 hours. At the end of this 6-hour period, the payload shall be func-
tionally tested to assure correct performance. At the end of this performance
check, the payload may be turned off.

High Temperature Vacuum

At the conclusion of the low temperature vacuum exposure, the chamber
temperature shall be raised to +25°C * 2°C (77°F), allowed to stabilize at
this temperature, and held there for 6 hours. At the end of this 6-hour pe-
riod, the payload shall be functionally tested to assure correct performance.
The chamber temperature and pressure shall then be returned to normal room
conditions.
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Post-exposure Examination and Test

After exposure to thermal vacuum, the payload shall be visually examined
and functionally tested to assure correct performance.
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Figure 2. Prototype, flight model, and telemetering ground

station.

Figure 3

e

Journeyman D-8 rocket.
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Figure 4. Rocket flight trajectory.

Figure 5. DeHavilland A2/2 antenna.
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Figure 6. Equivalent circuit of radio astronomy antenna.
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Figure 7. Mockup for Jansky and Bailey antenna tests.
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Figure 10. Preamplifier first stage.

Figure 11. Preamplifier second stage.
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Figure 15.

Typical receiver construction.




Figure 12. Preamplifier input transformer.

40 T
PROTOTYPE PREAMP

[///ﬂ\\\\\ FREQUENCY RESPONSE

35 - 7

) N pd

| \_/

) S aN /

L AN ,
\\\\\\~

/ S \

10 ‘
’ 24 pf / \

////, 10pf

D 4 .5 6 7 8 9 | 2 3

\
N
\

<
/
AN

E, (PREAMP)

FREQUENCY (MC)

Figure 15. Preamplifier frequency response curves.




*1INOJITO JIDATID3Y

*9T 2anSTd

{rOE1+)
d9-01-320Ld (¥S)$9-01- ¥901d
3dAL XI1ON3E XIGN3B:9N1d ONILYA
ond

LOdNI ¥3MOd (o)

(rg2-~)
.
2ge- 00A
.M:: $12'9Z0) ) WALA
H3N3Z ONI VZIpdH UNA 1961 ‘AoN 4 ad£j0j0xd 0% 0Q0Z UO paINseaW
*(uado ‘jue) paridde reusdts ou YA SISSEYD 0] 2P sade)joA-
*pajou ssaUn ‘pyur uy sadmeNdeded (V-
.m_.u pue —A Jo AIEpUODaR JO PUS WO)Oq JE PUROM HUTT-
.
1nd1n0 as
0301A “q ‘dES# LOT o deg# 10T ‘g dee# Log P |
6686 668G 1209 20.8
Sng paAowax 152 Ve
wzn 1 o9V THOVEEVTH THOVEEVTD 190€0TVT% 1
. B A
AZ'Se~ L
e @ SeLNi T b3 W «S.8.0, 0L 0SLN 14 02 osen g Lo ¢
AOE1+ o AAA—$ , , ] W-$ 1d 0§ W-s 1d 001 1d 00g o]
%! mzst  AOE z
8l oy 190pSIYT 180PEEVIY 1ObLPVI 1
A0Z LNALNO TAG+ - v oF v
’ W gg W gg id g, )
1ndLno _ o
a31vy93LNE NS 13 1 L 18 005 1d 00g 14 029 2
voos F. b3 uﬁzmn Tidoo
pasowalx Lg] paAoWdI LOp pasowdd L0g
= AAA A A (TNW) [Eciingg] (W) ar
AO-  mezs o/l 0- POARCE 128 1E08EEVIb 180601V 1E0bSIVIb 1
%01
@ M A Yoes 300NV 3 dESH LE/1-Y “@desk Le/i-b A -desk L8/1-6 | "0
noel+ OOINI-b 2% 0002 o% gz2l 2% 061 g
¥3IMONT03 3IQOHLYD 40193130 STLON
ag
T ) @
‘080 Vo071 mng Lveq rogl+
ALv S ST
AogI+ Aoei+ Ao+ 9 2/ig v 9] :
@ () (a)
mv/l Y7{B S
Smon %00!1 Arg neng
THLY < )
20- 10-0l o
YITIIN L P aq v
|m ml HOLY- : 9922WL
i ’ = Gl 3dAL 44H9
1908 1428
z Yool LNdNI
2N0SH 44
-1
L3- 11X AL+
€686 6686 2046 1209
4'I ANODJ3S 4°I 1SHId H3IXIN dWV ‘4'H




'—
2
o
'_
2
© 8
ul
(O]
<
[
J
o]
>
o
[a]
2
<<
[o]
w
N 4
a7 \
b 1.225 MC RECEIVER BANDWIDTH
14
S AT fe, dt= 2.0V
.2 \\\
o A
100 IKC 10KC
MODULATION FREQUENCY
Figure 17. Receiver bandwidth curve.
IN99
INPUT FROM R R, Cs =
0SC. 4MP —A AA———] P*
221K 3.92K .apt
| ANTENNA ios
D, \/ INS9 SWITCH ﬁ
T 1 IN99
— |
1 .
| : Eour B B2 Egur
—CA I i
) + o+
| ' 1.345V 1345V
T
S
t
R
. IN 99 100K
ANTENNA
SWITCH
INPUT FROM Apt
0SC. AMP szi 292K |f
R, Rga Cg k
Cs STRAY CAPACITANCE Z :)“99
Ca ANTENNA EQUIVALENT CAP s

Figure 18.

Antenna bridge circuit.



7
[ 2N13)
2Ni226
-25v 10K§)
] R, 56K 7-45
g——— et
470 7:45|, ng L3
Cyg= ppet T
ac
dl'zsm arol L% M=y
= t o.o2ut T
0.05 R >
== 2 0.02uf <
KIT% |0k X IBK.QgRa 'og‘o‘g
4
Q -25V 560 ozpt
(1)
200puuf imh
Ca== ? L, =
= L, | MILLER CHOKE 70 FIO3A 1

L2 | MILLER 4l AI04 CBI, 40 TURNS REMOVED.

L3 | Il TURNS #32, WOUND ON PORCELAIN BODY OF L2

L, | TOROID 24 TURNS # 32, DISTRIBUTIVELY WOUND ON GENERAL CERAMIC

CF102Q| CORE
Ls | TOROID 48 TURNS CENTER TAPPED DISTRIBUTIVELY WOUND ON CORE OF L,
Figure 19. Antenna bridge oscillator circuit.

fo= |.25Mc€">

CA"’O

Figure 20.

E —'] B, &8
o - )
Po® P

R
Ein CeT * (Z) Eout  Eout
| - l
_ *
RA<<XCA

Ein

Bridge

. —\\\\\\\\\\
e
' ———

vector relationship.




Figure 21. Bridge and oscillator.
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Figure 24, Noise generator spectral output.




Figure 25. Noise generator disassembled.

Figure 26. Noise generator assembled.
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Figure 45. Turnstile antenna.




Figure 46. Turnstile antenna matching network.
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Figure 52. Battery container.
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Radiometer DC-DC converter circuit.




Figure 54. Radiometer DC-DC converter.

Figure 55. Telemetry pressurized can.
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Figure 60. -25 v regulator.
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Figure 70. Telemetering ground station at Wallops Island.
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